Skip to content
  • YouTube
  • FaceBook
  • Twitter
  • Instagram

Data Analytics Ireland

Data Analytics and Video Tutorials

  • Home
  • Contact
  • About Us
    • Latest
    • Write for us
    • Learn more information about our website
  • Useful Links
  • Glossary
  • All Categories
  • Faq
  • Livestream
  • Toggle search form
  • How to Add Formulas to Excel using Python numpy
  • TypeError: ‘float’ object is not callable Python
  • How To Fix TypeError: unhashable type ‘slice’ python dictionaries
  • How to Pass Python Variables to Javascript Javascript
  • How to remove unwanted characters Python Data Cleansing
  • Python Tutorial: Pandas groupby columns ( video 2) Python
  • how to build a machine learning model machine learning
  • How to change the headers on a CSV file CSV

How to Compare Column Headers in CSV to a List in Python

Posted on May 27, 2021October 5, 2021 By admin No Comments on How to Compare Column Headers in CSV to a List in Python

Estimated reading time: 3 minutes

So you have numerous different automation projects in Python. In order to ensure a clean and smooth straight-through processing, checks need to be made to ensure what was received is in the right format.

Most but not all files used in an automated process will be in the CSV format. It is important there that the column headers in these files are correct so you can process the file correctly.

This ensures a rigorous process that has errors limited.

How to compare the headers

The first step would be to load the data into a Pandas data frame:

import pandas as pd

df = pd.read_csv("csv_import.csv") #===> Include the headers
print(df)

The actual original file is as follows:

Next we need to make sure that we have a list that we can compare to:

header_list = ['Name','Address_1','Address_2','Address_3','Address_4','City','Country']

The next step will allow us to save the headers imported in the file to a variable:

import_headers = df.axes[1] #==> 1 is to identify columns
print(import_headers)

Note that the axis chosen was 1, and this is what Python recognises as the column axes.

Finally we will apply a loop as follows:

a = [i for i in import_headers if i not in header_list]
print(a)

In this loop, the variable “a” is taking the value “i” which represents each value in the import_headers variable and through a loop checks each one against the header_list to see if it is in it.

It then prints out the values not found.

Pulling this all together gives:

import pandas as pd

df = pd.read_csv("csv_import.csv") #===> Include the headers
print(df)

#Expected values to receive in CSV file
header_list = ['Name','Address_1','Address_2','Address_3','Address_4','City','Country']

import_headers = df.axes[1] #==> 1 is to identify columns
print(import_headers)


a = [i for i in import_headers if i not in header_list]
print(a)

Resulting in the following output:

As can be seen the addresses below where found not to be valid, as they where not contained within our check list “header_list”

CSV, Python, Python Dataframe, Python Lists Tags:automation, check column headers, compare to list, Python List, python validate, validate CSV

Post navigation

Previous Post: How can I filter my data in Tableau?
Next Post: How to group your data in Tableau

Related Posts

  • How to Create an XML file from Excel using Python Python
  • How to save data frame changes to a file Python Dataframe
  • planning your machine learning model machine learning
  • how do I merge two dictionaries in Python? Python
  • Python Tutorial: Add a column to a data frame Python Dataframe
  • How to sort a Python Dictionary Python

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Select your language!

  • हिंदी
  • Español
  • Português
  • Français
  • Italiano
  • R tutorial – How to sort lists using rstudio R Programming
  • How to check if a file is empty Python
  • ValueError: invalid literal for int() with base 10 Value Error
  • Python tutorial: Pandas groupby ( Video 1) Python
  • hide a column from a data frame Python Dataframe
  • What is a Primary Key and Foreign Key SQL
  • Tableau Desktop versus Tableau Server data visualisation
  • How to Pass a Javascript Variable to Python using JSON Flask

Copyright © 2023 Data Analytics Ireland.

Powered by PressBook Premium theme

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPT
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT