Skip to content
  • YouTube
  • FaceBook
  • Twitter
  • Instagram

Data Analytics Ireland

Data Analytics and Video Tutorials

  • Home
  • Contact
  • About Us
    • Latest
    • Write for us
    • Learn more information about our website
  • Useful Links
  • Glossary
  • All Categories
  • Faq
  • Livestream
  • Toggle search form
  • how to create and drop a table in SQL SQL
  • Python tutorial: Pandas groupby ( Video 1) Python
  • Tableau Desktop versus Tableau Server data visualisation
  • ValueError: cannot convert float NaN to integer Null values
  • how do I merge two dictionaries in Python? Python
  • supervised machine learning vs unsupervised machine learning? machine learning
  • How To Validate Cell Values In Excel Python
  • What are dimensions in Tableau? data visualisation

How to use parameters in Python

Posted on November 19, 2021January 8, 2023 By admin No Comments on How to use parameters in Python

Estimated reading time: 5 minutes

Are you using a function and looking to pass values into it to be processed? Well if this is the case you are trying to pass arguments to that function’s parameters so they will return a value for you.

Parameters are just values that are associated with the function. For each function, you are going to have one or more parameters it is expecting to process.

As a result, there are a number of ways they are created, let’s explore how this can be achieved.

Passing arguments directly into a function parameters

In a lot of instances, the argument values to be processed are going to be passed into the function parameters, which then executes some logic and returns a value.

Typical ways this may happen:

  1. A password is entered ( the inputted argument), the function then confirms if it is valid or not.
  2. You may need to check if a value entered ( the inputted argument) is above or below a certain value. It is passed to a function parameter and then the function does the necessary checks, and confirms the result in the output.

The above are two examples, but let’s see this in action.

Below we have a function. The purpose is to take in two arguments passed to it and conduct a calculation on them.

The calculation happens in the variable number 1 or number 2.

Variable number 1 and variable number 2 get their values from parameters a and b respectively.

The line multiplenumber(1,2) is just calling the function and passing the arguments to the parameters a,b which then processes them and the output is printed.

def multiplenumber(a,b):
    number1 = a*2
    number2 = b*3
    print(number1,number2) #===> These values are different to the variables below as they happen as a result of the processing inside the function.

number1=1
number2=2
multiplenumber(number1,number2)
print(number1,number2) #===> These values are outside the function and do not have any relationship to the variables inside the function above, hence are different.

Result:
2 6
1 2

The result of the above piece of logic is called “passing by value“, which essentially means the data is passed from the variables ( number 1 and Number 2) to the function parameters, but when the function is completed processing, it does not impact the original variables outside the function.

This is because the original variables are immutable.

Passing arguments directly into function parameters from a list

In the above example, as outlined, there will be no impact on the variables that pass the arguments into the function, they remain the same.

On the other hand, if the original source of the arguments is a mutable object, it will have its values changed.

Let’s look at a situation where this may occur.

def addnumber(a):
    number=['3']
    a.append(number)
    print(a) #===> This prints the original value of a with the addition of the value 3

number1=[1,2]
addnumber(number1)
print(number1) #===> As number1 is passed to the function, and number1 is allowed to be changed then this will print out the new list value once the function has completed processing.

Result:
[1, 2, ['3']]
[1, 2, ['3']]

So in this instance, as number1 is a list, and this is mutable, its value will change once the function completes its processing.

This can also be called “passing by reference“.

Passing arguments between functions

In another video, we completed called how to pass data between functions this discusses how you can pass the data between two functions and print it out.

Effectively in the below the arguments are name, country, city, and these values are passed to functionb

def functiona():
    name = "Joseph"
    country = "Mars"
    city = "atlantis"
    #this captures the three variables above
    return name,country,city
functiona()

def functionb():
    myname,mycountry,mycity = functiona()
    print(myname)
    print(mycountry)
    print(mycity)

functionb()

Result:
Joseph
Mars
atlantis

Passing arguments using *args as the parameter

In order to understand this, before we look at some code we need to understand what are *args?

*args essentially allows you to pass multiple positional arguments to a function, and this can vary over time.

As a result, you don’t have to assign the positional arguments to more than one variable. The *args take in all the arguments, no matter how long or short they are and then return a value.

def addnumbers(*args):
    result = 2
    for x in args:
        result = result * x
    return result

print(addnumbers(1,2,3))

Result:
12

Passing arguments using **kwargs as the parameter

In contrast to the above, this will process a set of values that have a name attached to them.

As can be seen in the previous example the arguments passed had no name attached to them.

Let’s look closely at an example. In this scenario, the arguments are assigned a value of a,b,c.

def addnumbers(**kwargs):
    result = 2
    for x in kwargs.values():
        result = result * x
    return result

print(addnumbers(a=1,b=2,c=3))

Result:
12

Here it is clear that the logic takes in each value of a,b,c processes it and then returns the result required.

In essence, both *args and **kwargs give you the same answer, it just depends on other parts of your code and how it is processing your data.

For example, in the **kwargs it could be that the values of a,b,c could be populated by other variables within the program.

So in that scenario, the variable that has been passed on can change and not be static.

So in summary:

a. Arguments can be passed multiple ways to functions, the parameters then just process them.

b. Parameters also don’t have to be assigned to a variable, they can be read in through *args.

c. On the other hand you can have multiple arguments read in at once by using the **kwargs.

Python, Python Functions, Python Lists Tags:**kwargs, *args, Data Analytics, Functions, Python, python arguments, python parameters

Post navigation

Previous Post: How to Generate Random Integers Between 0 and 9
Next Post: How to Pass a Javascript Variable to Python using JSON

Related Posts

  • What are the reserved keywords in Python Definition
  • How to create a class in Python class
  • Tkinter python tutorial Python
  • Tkinter GUI tutorial python – how to clean excel data Python
  • TypeError: ‘float’ object is not callable Python
  • Python tutorial: Pandas groupby ( Video 1) Python

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Select your language!

  • हिंदी
  • Español
  • Português
  • Français
  • Italiano
  • how to compare two lists in Python Python Lists
  • ValueError: Columns must be same length as key exception handling
  • How to pass multiple lists to a function and compare Python Functions
  • How to import data into excel Python Tutorial
  • hide a column from a data frame Python Dataframe
  • What are the reserved keywords in Python Definition
  • How to change the headers on a CSV file CSV
  • R – How to check a file exists and is not empty R Programming

Copyright © 2023 Data Analytics Ireland.

Powered by PressBook Premium theme

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPT
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT